
I AD-A091 242 HAlAII UNIV HONOLULU DEPT OF ELECTRICAL ENGINEERING F/I 9/2
COMPUTER ORGANIZATION AND INFORMATION HIDING.(U)
JUL 80 R CHATTER6Y DASGAG-79-C-0118

UNCLASSIFDIE NL

"o mIIIIIIIIImhmhhhh
Slflflflfl7



SSECURITY CLASSIFICATION OF THIS PAGE ("on Date EnItriV LI

Computer Organization and Information Hiding) Interim, Third Quarter
6PERFORMING ONG. REPORT NUMBER

1. AUTHOR(*) S. COTATO RANT MUMMER(#)

R.~~ Cht/r96-j DASG~ff -79 --- C -AI 18/1

10. PORAM ELEMENT PROJECT. TASK
AREA 4, WORK UNIT NUMMERDept. of Electrical Engineering

University of Hawaii
2540 Dole St. Hon.,_HI__96822_____________

11 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Technology Center ___7/15/80_______________

U.S. Army Ballistic Missile Defense . F3. NUMBER OFPACES
P.O. Box 1500 Huntsville, Alabama. 35807 16

,J01R1% 4. MONITORING AGENCY NAME G ADDRESS(if diffteret Irom Controling Office) 1S. SECURITY CLASS. (of this rmpt)

Office of Naval Research
1030 E. Green St. 55./DOWNGRADING
Pasadena, Calif. 91106UE

1S. DISTRIBUTION STATEMENT (of this Report)

dDistributitn Uninic

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveres old* it necesarand midedntify by block number)

C) Computer organization, Information hiding, Coupling, Modules, Architecture.

20. ALT RACT (Continue an roe., side liInecosea,, and Identify by block num ber)
jA new internal organization of a computer is proposed by applying the

N principle of information hiding to the structure of a computer. The new
organization is inspected in the light of the requirements set forth on
computer organization by Functional Programming systems. The turrent
status of the implementation of such a computer and the future directions
of research are mentind

DD F..m.1473 oe.

SECURITY CLASSIFICATION oF THI1S PAGE (ftonu Data Entered)

807



COMPUTER ORGANIZATION AND

INFORMATION HIDINGt

RAHUL CHATTERGYft t

Abstract--A new internal organization of a computer is proposed by

applying the principle of information hiding to the structure of a

computer. The new organization is inspected in the light of the

requirements set forth on computer organization by Functional Program-

ming systems. The currect status of the implementation of such a

computer and the future directions of research are mentioned.

Index Terms - Computer organization, Information hiding, Coupling,

Modules, Architecture.

tSponsored by The Ballistic Missile Defense Advanced Technology Center,
Huntsville, Alabama, under Contract No. DASG60-79-C-0118.

ttDepartment of Electrical Engineering, University of Hawaii, 2540 Dole
Street, Honolulu, HI 96822.



I. INTRODUCTION

The internal organization of a computer has remained unchanged

since the first stored-program digital computers EDVAC and EDSAC were

designed. With the passage of time the complexity, the size and the

response-time requirements of the programs have enormously increased.

The stringent demands placed on the digital computers have uncovered

many of their organizational limitations on performance. Various modi-

fications have been developed to alleviate these restrictions on perfor-

mance with attendant problems of their own.

Our purpose is to uncover the basic principle (if any) behind the

organization of the existing computers and then to search for new

principles of organization of complex systems. We contend that some of

the limitations of the current organization are inherent in the princi-

ple used to create such an organization. Only alternate principles of

organization can remove these limitations and produce radically differ-

ent internal organizations of computers.

We believe that Parnas' principle of information hiding [1], (2] is

such an alternate principle. This principle originated in software

engineering, but portends new structures for computer organization.

.a ly' ,:,Zia / or

Dist spec

IceL~o

I fll ., , , ., , - . .. ... _ _ I I -- I I IIfllC '



2

II. THE CONVENTIONAL ORGANIZATION

Let us consider some of the current computational demands on the

existing computer systems. One such demand is the creation of a compu-

tational environment for real-time computing. The following set of

requirements for real-time computing are obtained from [3]: (1) large

databases created in real-time, (ii) routines of enormous size,

(iii) totally automated system requiring a high degree of reliability,

and (iv) real-time response in a rapidly changing environment.

Distributed processing [5] is examined in [4] as a possible

approach to real-time data processing. The basic idea consists of dis-

tributing processing power and making it available at the point where

data are stored. The motivating factors for a distributed processing

system are the ease of system modification, reconfiguration, graceful

degradation, and an increase in throughput with a corresponding reduc-

tion in response-time.

Until now, to our knowledge all processing systems, no matter how

novel, have been based on the conventional Mauchly-Eckert-von Neumann

organization of a computer. This organization is based on controlled

exchanges among a storage unit (STU), a processing unit (PRU), and an

Input/output unit (IOU). This organization is further characterized by

strong couplings [6] via large volumes of exchanged information among

these units.

The network approach to distributed processing employs computers

with conventional organization as host processors. Multiprocessor

systems multiply the number of the STUs and the PRUs connected through



a switching network or a shared bus structure with a tendency to satu-

rate quickly-under the increased'volume of transfers.

The conventional organization has certain limitations which can not

be eliminated by cleverly designed interconnection networks. Some of

these limitations and attempts to alleviate their effects are discussed

in the next section.

al



4

III. LIMITATIONS OF THE CONVENTIONAL ORGANIZATION

The following is a partial list of the limitations of the conven-

tional organization: (1) storage bottleneck, (ii) difficulty in pro-

gramming, (iii) limited flexibility for multiprocessing, and (iv) long

processing time. These limitations and their implications have been

discussed by various people in the past (7, 8, 91.

Let us mention just one important implication of the conventional

organization, pointed out by Backus [9]. This organization has affected

the structure of all programming languages developed in the past. A

conventional programming language is basically a high-level, complex

version of the Mauchly-Eckert-von Neumann computer. From this point of

view one can say that, reducing the semantic gap between a conventional

programming system and a computer may make programming somewhat easier,

but it will not create a radically new programming system.

The storage bottleneck mentioned earlier is a major limitation of

the conventional organization. It is in part responsible for the

limited flexibility for multiprocessing and the long processing time.

One approach to reduce storage access-delay uses interleaved

addresses and a recirculating buffer to store addresses [10]. The

resulting problem of the alteration in the sequence in which incoming

addresses are accepted by the storage system is resolved by introducing

read/write distributors.

The increased storage bandwidth so obtained is utilized by allowing

look-ahead fetch of the instructions from the storage unit. The look-

ahead fetch technique is based on the empirical principle of locality

exhibited in most instruction streams. The presence of branch



- 5

instructions gives rise to the problem of buffer management and a scheme

for that is described in [11].

To take advantage of a rapid stream of instructions, one either

uses a pipelined processor [12] or a concurrent-execution processor

[10]. Each processor has its own set of control problem and are con-

trolled in complex ways (see [10, 11, 12]).

Reduction of procesting time has long been a major objective for

the design of scientific processors. Cray-i [13] is a current example

of such a processor which uses a large local store in the processor,

and a technique known as chaining for reducing processing time.

We hope that this short discussion demonstrates that the conven-

tional organization of a computer has serious limitations. Complex

control schemes have been invented to moderate the effects of some of

the limitations. Some of the implications of these limitations are very

disturbing indeed for they influence our way of thinking about program

and programming [9].



6

IV. FUNCTIONAL DECONPOSITION

Let us now see if we can find any principle behind the organization

of the conventional computer. If no such principle exists, then we are

doomed to inventing ad hoc methods for solving one problem created by

the solution of another. However, if a principle can be identified, we

can look for alternate principles and hope to find a better one.

A computer is a complex system and, therefore, it is probably

organized by using some principle used to organize other complex sys-

tems. One such principle, used from time immemorial, is the principle

of decomposition. A complex system is decomposed into modules where

each module represents a simpler subsystem. The process of decomposi-

tion may be hierarchical or not [14] and may consist of several levels.

But how do we define the boundary of each module? An intuitive

and very commonly used approach is to define a module by its function.,

We call this mode of decomposition, functional decomposition, and derive

from it the principle of functional decomposition.

Let us now apply this principle of functional decomposition to the

organization of a computer. The overall function of a computer can be

decomposed into a STORE function and a PROCESS function if we ignore

input/output for the moment. The STORE function Is Implemented in a

hardware STU module. This module needs only a medium of storage and

some hardware for storing and retrieving information in selected loca-

tions.

The PROCESS function is implemented in a hardware PRU module. The

basic functions of this module is to differentiate among the instruc-"

tions and the operands, fetch the instructions in a prescribed sequence,



7

fetch the operands as necessary, and execute the instructions. As a

consequence, a PRU has hardware for instruction flow control, address

computation, local storage, local storage control, a arithmetic/logic

unit (ALU), and ALU operations control. Furthermore it has control cir-

cults for controlling a IOU which operates asynchronously from the PRU

and the STU.

Programmers often use the principle of functional decomposition to

modularize large programs. A measure of success with such an approach

is the number of modules (often subroutines) that can be shared to

perform different functions. This is no different from the decomposi-

tion described in the previous paragraphs. The control circuits for

address computation, instruction flow control and IOU control in the PRU

are similar to the shared subroutines. They are shared among different

programs in the STU to carry out different overall functions.

The reason for the storage bottleneck is now obvious. Most of the

control functions are concentrated in the PRU, and the objects being

controlled are mostly in the STU. Most of the traffic between the STU

and the PRU consists not of the objects being operated upon, but infor-

mation to be processed by the control functions to identify these

objects [9].

It



8

V. INFORMATION HIDING

In the our opinion, a truly new principle of decompostlon was

first enunciated by David Parnas in (1]. The modules obtained by using

this principle do not necessarily correspond to the functions carried

out in a computational system. Each module organizes-and manipulates

data structures which it hides from the other modules and hence, the

name principle of information hiding. From a broader.perspective, each

module hides certain design decisions from other modules.

A specific guideline for system decomposition, that originates from

the principle of information hiding, is to make a data structure, its

internal linkings, accessing, and modifying procedures, part of a single

module. Such a guideline can be used for the decomposition of any

complex system, not necessarily just software. We shall use this guide-

line to decompose the hardware system of a computer.

A basic information structure in a computational environment is a

program which consists of a set of instructions and a set of operands.

Hence, we create an instruction module which consists of a set of

instructions along with the procedures for instruction flow control and

address computation. Similarly we create an operand module which stores

operands and incorporates operand accessing procedures. The processor

module consists of the arithmetic-logic unit, local storage, and proce-

dures for managing these resources.

In this decomposition of a computing system, the processor module

receives Instructions and operands and returns results and/or the status

of an operation. It does not receive or process addresses. Addresses



9

are retained and processed only by those modules that need to process

then.

Information must still be exchanged among the instruction module,

the operand module and the processor module. However, they exchange

only such information as is essential for the proper functioning of the

overall system. Some addresses must be exchanged between the instruc-

tion module and the operand module. The number of bits transferred can

be minimized by such conventional techniques as relative addressing.

External information may need to be transferred to the processor module

for the management of local storage. The amount of such information can

be minimized if the local store is structured as a stack. Certain syn-

chronization information must also be exchanged, but this is also true

in a conventional organization.

The principle of information hiding generates modules which hide

information, and tends to minimize information transfers among modules.

Hence, it is perhaps not inappropriate to call these modules, latent-

information modules and the resulting organization, minimum information-

transfer (MIT) organization. Admittedly the implied minimization is not

quantitative in nature. However, the benefits to be derived at this

point from a purely ritualistic formalization and quantization is not

clear. Hence, let us consider some of the implications of the minimum

information-transfer organization.

*'m.



10

IV. MINIMUM INFORMATION-TRANSFER ORGANIZATION

The MIT organization removes a bottleneck between the STU module

and the PRU module which Backus has called the "von Neumann bottleneck"

[9]. This is done by a redistribution of the processing power from one

module to another, according to the principle of Information hiding. A

somewhat similar organization can be found in the Fairchild F8 micro-

processor system.

Implimentatlon of latent-information modules by LS1 circuit techno-

logy can alleviate the constraint of pin-limitation. For example, one

version of a conventional microprocessor (MC68000) uses a 64 pin package,

out of which, 32 pins are used for address transfers. With a MIT organ-

ization based on latent-information modules, such pins on the processor

module can be made available for other uses.

Two of the most important uses of these pins are, (i) direct inter-

action with a stream of input/output data, and (ii) direct processor to

processor communication. In the first case, an instruction module along

with a processor module connected to suitable transducers can create a

real-time processing system. Such a processing system may be useful in

guidance and weapons systems where long-term storage of input data may

be pointless. The second case opens up a new-way of interconnecting

processors that does not use shared memory accessed via an asynchronous,

shared bus. Processors may be pipelined or Interconnected according to

other schemes for special purpose computing systems.

A MIT organization is also ideally suited for implementation by

means of VLSI circuit technology. The chip area is better used since the



11

number of lines interconnecting latent-information modules are kept at

a minimum by module design.

Certain other Implications of the MIT organization have come to

light during a recent experiment described in the next section.

all



12

VII. CURRENT STATUS OF RESEARCH

As an experiment in NIT organization, we have simulated a small

uniprogrammed stack computer designed on the basis of the principle of

information hiding. In programming this simulated machine we realized

that the instruction module can be further decomposed into two subnod-

ules.

The instruction-stream module stores packets of instructions where,

such packet has a definite beginning and an end. Instructions within a

packet are executed sequentially. The purpose of the instruction-stream

module is to supply a stream of instructions upon receiving a packet

identification.

The flow-control module directs control through these packets. It

stores machine language versions of higher level constructs such as,

WHILE statements. The procedures in this module interpret these con-

structs and direct the flow out of the instruction-stream module.

The results of this simulation study will be discussed in the

future. The discovery of the usefulness of the Instruction-stream

module, and the flow-control module leads us to believe that the natural

mode of programming on a MIT organization is not the one-word at a time

approach of von Neumann languages [9]. Each packet may change the con-

tents of the store in a major way. Once such a packet is transmitted to

a processor module, it is not interrrupted until the entire packet Is

done. Interrupts are channeled to the flow-control module. To summa-

rize, some version of the MIT organization may be better suited to

support a functional programming system [91 than a conventional

organization.



13

Recently we have come to know [15] that Dougherty at the Franklin

Research Center has implemented hardware systems that can be reconftg-.•

ured into a MIT organization. Cooperative investigation of a MIT

organization on this hardware system is being planned.

' I



14

VIII. FUTURE DIRECTIONS

In essence, this paper presents a proposal in the same vein as in

[16], for the organization of a new computing system. As yet, the

design cannot be supported by empirical data and it will take time to

gather such data. However, the organization is based on a radical

application of a software design principle to hardware design. It

appears to have far reaching Implications for the LSI and VLSI circuit

implementations of computing systems and also on their programming

methods.

The general objective of this research effort is to arrive at a

design technique that can generate a family of computers of varying

processing power. Obviously this cannot be done by taking individual

systems and reorganizing them according to the principle of information

hiding.

A better approach is to design a family of operating systems [17]

and to allow each member of the family to dictate the organization of

its hardware. In [17], Parnas has described the virtual memory module

of such a family. We are attempting to design the I/O module of such a

family based on the concept of interrupt hiding [15, 18].

Finally, let us note that a NIT organization is not a virtual

machine. To obtain a virtual machine we program a given hardware

organization. A MIT organization is obtained by using a software design

principle to dictate the organization of the underlying hardware.



15

REFERENCES

1. Parnas, D.L., *On the Criteria to be Used in Decomposing Systems 15Into Modules," CACM, v. 5, no. 12, December 1972, pp. 105315.

2. Parnas, D.L.. "Information Distribution Aspects of Design
methodology," Proc. IFIP Congress. North-Holland, 1972,
pp. 339-344.

3. Vick, C.R., "Requirements for a Real-Time Data Processing System",
Proc. 11th Hawaii Intl. Con?. nnt System Science, January 1977.

4. Vick, C.R., J.R. Scalf and W.C. McDonald, "Distributed Data
Processing for Real-Time Applications," Proc. Texas. Computer
Con?., Austin, Texas, November 1977.

5.. Rao, C.R. and C.V.-Rainanoorthy, "The Design Issues in Distributed
Computer Systems," Infotech, London, pp. 377-399.

6. Chattergy, R., "On the Concept of Coupling," Interim Report No. 2,
Bf4DATC, May 1980..

7. Reath, F.G., "Entering the Non-von-Neuman. Era," IEEE Computer and
Digital Techniques," v. 2, no. 2, April 1979, pp. 57-58.

8. Thompson, T.R., Computers and Their Future, Speeches given at The
World Computer Pioneer Conference, Llandudno, July 1970,

- -. - -Published by Richard Williams and Partners, G.P.O. Box 8.
Llandudno, Wales, pp. 8/1-8/27.

9. Backus, J1., "Can Programmning be Liberated from the Von Neumann
Style?,.," CACM, v. 21, no. 8, August 1978, pp. 613-640.

10. Thornton, .J.E. , "Design-of-a Computer, The Control Data 6600,,~...
Scott, Foresman, 1970.

11. Ibbett, R.N., "The MU5 Instruction Pipeline," Computer Journal,
v. 15, 1972, pp. 43-50.

12. Ibbett, R.N. and P.C. Capon,-"The Development of the MU5SComputer
System," CACM, v. 21, no. 1, January 1978, pp.. 13-24.

13. Russell, R.M., "The Cray-l Computer System," CACM, V. 21, no. 1,
January 1978, pp. 63-72,

.14. .Parnas, D., "On a 'Buzzword':...Hterarchical Structure," Proc. IFIP
Congress, North-Holland, 1974, pp. 336-339.

15. Dougherty, E.J., Private Commnunication, Franklin Research Centers
Philadelphia.



16

16. Kilburn, T. et al., "A System Design Proposal," Proc. IFIP Congress,
Edinburgh, August 1968.

17. Parnas, D.L. et al., "Design and Specification of the Minimal Subset'
of an Operating System Family," Trans. IEEE Software Engineering,
v. SE-2, no. 4, December 1976, pp. 301-307.

18. Wirth, N., "On Multiprograming, Machine Coding, and Comp~uter
Organization," CACI, v. 12, no. 9, September 1969, pp. 489-498,
(Corrections, v. 13, no. 4. April 1970, p. 266).


